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§4. SOLUTIONS TO MAXWELL'S EQUATIONS 

The equations given in Eq. (3.69) are almost perfectly symmetric in EE  
and BB . The solution to these four equations will be done using two 
different approaches. The first will develop the wave equation by using 
vector algebra. The second approach will make use of the vector and scalar 
potentials. Both methods result in Maxwell’s wave equations, however the 
vector potential solution will prepare the way for the quantum mechanical 
description of the propagating electromagnetic wave. 

§4.1. VECTOR ALGEBRA SOLUTION TO MAXWELL’S EQUATIONS 

If the two Divergence equations are set aside for a moment, the two  
Curl equations describe coupled electric and magnetic fields since they 
both contain EE  and BB . This approach to the solution will eliminate the 
duplicate terms and produce the wave equation directly. 

Taking the Curl of Eq. (3.69b) gives,   

 
( ) ( )

t
∂

∇× ∇× = − ∇×
∂

E B
. 

(4.1) 

inserting Eq. (3.69d) into Eq. (4.1) gives, 
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2

2t t t
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Since ( ) ( ) ( )∇× ∇× = ∇ ∇⋅ − ∇⋅∇E E E , the first term of Eq. (4.2) is zero, 
because Gauss’s law states 0∇ ⋅ =E  and the second term is the definition of 
the Laplacian operating on EE . In Cartesian coordinates, 
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The same manipulation can take place for Eq. (3.69c) giving, 
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The results of Eq. (4.3) and Eq. (4.4) are Maxwell’s wave equations 
propagating through free space. 
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§4.2. VECTOR POTENTIAL SOLUTION TO MAXWELL’S EQUATIONS 

Maxwell’s equations can be solved as they stand in simple situations, 
but it is often convenient to introduce potentials, obtaining a smaller 
number of second–order equations while satisfying some of the Maxwell 
equations with an identity. [1] 

Since 0∇ ⋅ =B  (Eq. ( II )) still holds, BB  can be defined in terms of a 
vector potential, such that, 

 = ∇ ×B A  (4.5) 

Faraday's Law Eq. ( IV ) can be written as, 

 0
t

∂ ∇× + = ∂ 
AE . (4.6) 

This means that the quantity with a vanishing curl in Eq. (4.6) can be 
written as the gradient of some scalar function, 

 
t

∂
+ =−∇φ

∂
AE , (4.7) 

or, 

 
t

∂
= −∇φ−

∂
AE . (4.8) 

The definitions of BB  and EE  in terms of the potentials AA  and φ  will be 

determined by the homogeneous equations Eq. (3.8) and Eq. (3.30) [2] The 

                                                 
1 The solutions to Maxwell's equations using the scalar and vector potential is the 

modern approach and is given in hindsight as the logical approach to the problem. As is 
usual with such revisionist matters the logic of this approach was not obvious to the 
investigators of Maxwell's time, but the developed over a period of intense effort, resulting 
in the hindsight of today [Buch85]. 

2 The origins of the potential solution to Maxwell's equations is obscured by history. 
The earliest accounts of partitioning any well–behaved vector field into its irrotational (curl 
free) and solenoidial components can be found in [Helm58]. In general, vector fields are 
determined by the knowledge of their curl and divergence. 

In 1846 — the year after he had taken his degree as second wrangler at Cambridge, 
J. J. Thompson (1856–1940) investigated the analogy between electric phenomena and 
mechanical elasticity. He examined the equations of equilibrium of an incompressible 
elastic solid which is under strain. He showed that the distribution of the vector which 
represents the displacement could be compared to the distribution of the electric force in a 
electrostatic system. The elastic displacement could be identified with a vector AA , defined in 
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inhomogeneous equations, Eq. (3.5) and Eq. (3.24), can be written in terms 
of the potentials as, 

 ( )2

t
∂

∇ φ + ∇ ⋅ = −ρ
∂

A , (4.9) 

and, 
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2t t

∂ ∂φ ∇ − − ∇ ∇⋅ + = − ∂ ∂ 
AA A j . (4.10) 

The four Maxwell equations are now reduced to two coupled 
inhomogeneous differential equations, Eq. (4.9) and Eq. (4.10) The 
uncoupling of these equations can be accomplished by exploiting the 
arbitrariness involved in the definition of the potentials [Brom70]. Since 
the BB  field is defined through Eq. (68) in terms of AA , the vector potential is 
arbitrary to the extent that the gradient of some scalar function χ  can be 

added to the vector potential. [3] The magnetic field BB  is left unchanged by 
the transformation, 

 ′→ = +∇χA A A . (4.11) 

In order that the electric field be unchanged as well, the scalar 
potential must be simultaneously transformed as, 

 
t

∂χ′φ → φ = φ −
∂

. (4.12) 

The transformations in equation Eq. (4.11) and Eq. (4.12) are called 
gauge transformations and the invariance a gauge invariance. 

 The solution to Maxwell's equations using the scalar potential field φ  
and vector potential field AA , which in turn relate to the electric and 
magnetic fields by Eq. (3.5) and Eq. (3.24) [Eyge72] can be further 

                                                                                                                                          
terms of the magnetic induction BB , by the familiar ∇ × =AA BB . The vector AA  is equivalent 
to the vector potential which had been mentioned in the memoirs of Weber and Kerchief on 
the induction of currents; but Thompson arrived at this independently. Although 
Thompson laid the groundwork, it was J. C. Maxwell who provided the solution to the 
electromagnetic propagation question through his wave equation formulation. 

3 The vector AA  is not completely determined by the magnetic field BB , since for any 
scalar function χ , ∇ × ∇χ = 0  the gradient of an arbitrary function χ  can be added to the 
vector field AA . For the scalar potential φ , the time derivative of the arbitrary scalar 
function χ  is subtracted in order to maintain the electric field's invariance. 
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simplified using several techniques. [4] The solutions provided below are 
given without the formalism of their derivations which can be found in 
[Feyn64], [Cowa68] and [Land71]. One approach to the solution of 
Maxwell's equations is the use of Green's Theorem, developed in detail in 
the next sections. The approach is taken with the intention of developing a 
radiation oriented set of equations that can be used to solve problems in 
the radiation zone of the electromagnetic field. 

By using the vector identity, 2( )∇×∇× = ∇ ∇ ⋅ − ∇A A A , and substituting 
Eq. (4.1) and Eq. (4.4) into Maxwell's equations, results in the 
corresponding scalar and vector field equations, 

 
( )

2
2

2

2
2

2

, ( )

0 0.,
( )

,
( )

( )

at t t

b

t t t c

dt t t

∂ φ ∂ ∂φ ∇ ⋅ = ρ ⇒ ∇ φ − + ∇⋅ + =−ρ  ∂ ∂ ∂  
∇ ⋅ = ⇒ ∇⋅ ∇× =

∂∂ ∂φ ∇× = + ⇒ ∇ − − ∇ ∇ ⋅ + = −  ∂ ∂ ∂  
∂ ∂ ∂ ∇× = − ⇒ ∇× − −∇φ = − ∇×  ∂ ∂ ∂  

E A

B A

AEB j A A j

B AE A

 (4.13) 

§4.3. INTEGRAL FORM OF MAXWELL'S FIELD EQUATIONS 

The freedom of defining an arbitrary scalar and vector potential 
implied by Eq. (4.11) and Eq. (4.12) means that a set of potentials can be 
chosen such that, 
                                                 

4 The introduction of the scalar and vector potential fields is motivated by the search 
for solutions to the EE  and BB  fields whose form is appropriate for the traveling waves 
development in the next section. The vector and scalar potentials in Eq. (4.7)) and Eq. (4.8) 
are not unique. The simplification obtained by the introduction of AA  and φ  must be paid for 
by the fact that φ  and A A are not unique for a given E E and BB  field. Starting with a given 
choice of AA  and φ , the same fields may be obtained from the alternative potentials, 
AA AA AA→ ′ = + ∇χ  and φ φ φ ∂χ ∂→ ′ = − t where χ  is an arbitrary scalar function that does 
not effect the individual field components. Since it is the fields which are the observable 
quantities there is no physical basis for choosing AA  or ′AA . The field calculated from ′AA  is 
the same as the one calculated from AA . Therefore only those quantities invariant under the 
gauge transformation will have direct experimental significance. The transformation is 
called a gauge transformation and is further developed in the section on Gauge Theory; the 
Maxwell equations are said to be invariant with respect to gauge transformations. The 
useful gauge transformations found in electrodynamics are: the Lorentz Gauge: ∂ ∂AA xi = 0 , 
the Radiation Gauge: ∇⋅ =AA 0  and the Coulomb Gauge: ∇ ⋅ = =AA 0 0, φ . The concept of 
gauge invariance and its relationship to the electromagnetic potential is developed further 
in later sections. 
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 0,
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∇ ⋅ + =

∂
A  (4.14) 

that defines the Lorentz condition which allows an arbitrary specification 
of the vector and scalar potentials. [5] The Lorentz condition can now be 
used to uncouple the pair of equations Eq. (4.9) and Eq. (4.10) and leave 
two inhomogeneous equations [Borm70] (which later will be developed as 
the wave equations) one for φ  and one for AA , 
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§4.3.1. Green's Function and the Potential Solution 

The problem[6] of finding the solution to the potential equations AA  and 
φ  in terms of currents and charges may be approached using Fourier 
analysis and its differential equation solution technique, Green's 
Functions. Using Green's functions [Gree71], [Boch01], [Butk68], [Mors53], 
[Arfk85], and the Lorentz gauge is an approach that allows the 
introduction of gauge invariance — which will later be important in the 
quantum mechanical description of the radiation field. [7] Using Eq. (4.13)

                                                 
5 The Lorentz condition is not as arbitrary as some texts state, in that it leads to a 

symmetry between the vector and scalar potentials that allows these potentials to satisfy 
the same wave equation. In addition the Lorentz condition also provides a relativistic 
covariant relation between the scalar and vector potentials [Pano66]. 

6 This section is one the diversions necessary to explain what is usually glossed over in 
many text books. The solution to Maxwell's equations using the scalar and vector potential 
makes use of the Green's function method. In this method partial differential equations 
may be solved in a straight forward manner, without explicit consideration of the boundary 
conditions. 

7 This theorem was first presented in 1828 by Georg Green (1793–1841) in his “Essay 
on the Application of Mathematics to Electricity and Magnetism” [Maxw65]. In the general 
theory of boundary value problems, an important role is played by a mathematical theorem 
called Green's Theorem and by certain integral expressions for the potential that are 
derived from it. Consider a volume V bounded by a closed surface S, let nn  be an outwardly 
pointing normal to the surface. Let ′r  be a position vector in a coordinate system with 
arbitrary origin. Given two arbitrary functions ψ( )′rr  and χ( )′rr  that are appropriately 

continuous in V and form the function ( ) ( ) ( )′ ′ ′= ψ ∇χA r r r . Then the divergence of the 
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(a) and Eq. (4.13)(b), a Green's function will be used to construct a general 
solution of these potential equations in integral form. A Green function 
( , ; , )G t t′ ′r r , where ′r  and t′  are passive parameters that satisfy, 
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will be used as the basis of the solution of Maxwell's potential equations. 

Beginning with the point source charge at the origin 0t′ ′= =r , 
0 ( , ) ( , ; ,0)G t G t=r r 0  such that 0G  satisfies the Laplacian, 
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Since the source is a point charge, the solution is dependent only on r = r . 

Using the Laplacian in spherical coordinates, but with the angular 
coordinate, φ , equal to zero, Eq. (4.17) becomes, 
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The solution to this equation at a distance from the origin is, 

 0

( / )
( , )

f t r cG t
r

±
=r , (4.19) 

where f is an arbitrary function of time and space. 

Integrating Eq. (4.18) over a small volume V∆  containing the origin 
gives, 
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function is given by ∇ ⋅ = ∇ψ ⋅ ∇χ +AA ψ∇ χ
2 . The divergence theorem 

V S

dv ds′∇ ⋅ = ⋅∫ ∫A A  

yields 2( )
V S

dv ds′∇ ψ ⋅ ∇ χ + ψ ∇ χ = ψ∇χ⋅∫ ∫ . Writing a similar equation with the roles of ψ  and 

χ  interchanged and subtracting the two equations and using ( ) ( )ds n ds′ ′ψ∇χ ⋅ = ψ ∂χ ∂  

gives ( ) ( )[ ]2 2( )
V S

dv n n ds′ ′ψ∇ χ + χ ∇ ψ = ψ ∂χ ∂ − χ ∂ψ ∂∫ ∫ . This relation between the surface 

and volume integrals is Green's Theorem. 
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With 0G  of Eq. (4.19), the integrand of the first integral in Eq. (4.20) is 
singular resulting in an improper integral. 

The integral in Eq. (4.20) can be properly redefined by recognizing the 
integrand is 2

0 0G G∇ = ∇ ⋅ ∇ . By the divergence theorem the volume 
integral of the divergence can be converted to a surface integral over the 
small bounding surface 0S∆ → . [8] 

With the conversion from a volume integral to a surface integral, the δ  
function condition in Eq. (4.20) becomes, 
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∂∫ ∫  (4.21) 

Substituting the explicit form Eq. (4.19) into the equation and using, 

 0 2

1f fG
r c r

′ ∇ = ± ⋅ 
 

r , (4.22) 

where the prime denotes differentiation with respect to the argument of 
the function and 0r  is the radius of the small spherical volume about the 
origin, gives, 
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Letting 0 0r →  results in ( ) ( )f t t= δ , giving, 
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and, 
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8 The divergence theorem states that for any well–behaved vector field ( )xA  defined 

within a volume V surrounded by the closed surface S the relation 
V

A nda Adv⋅ = ∇ ⋅∫ ∫Ñ  

holds between the volume integral of the outwardly directed normal component of AA . This 
relation can be used as the definition of the divergence of a vector field [Stra41], pg. 4. 
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§4.3.2. Field Potential Solutions 

This Green function allows the integration of Eq. (4.13)(a) and Eq. (4.13)(b) 
so that the solution to φ  and AA  is, 
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 (4.26)
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The solutions provided by equations Eq. (4.26) and Eq. (4.27) are 
particular integrals of the inhomogeneous equations Eq. (4.13)(a) and 
Eq. (4.13)(b). For the purpose of adapting to given initial and boundary 
conditions, integrals of the homogeneous potential equations can be added 
to produce the wave equations for AA  and φ . [9] 

In Eq. (4.26) and Eq. (4.27), t c′− −r r  denotes, that for ( )tφ , the value 
of the charge density ρ  at time t c′− −r r  should be used. That is, for each 
element of charge dvρ , the equation states that the contribution to the 
potential is the same form as in the static charge density equation, 

1
4

dV
r

φ = ρ
π ∫ , except that the finite propagation time for the charge effect 

must be accounted for. For computing the total contribution to the 
potential φ  at a point x at time t, the values of charge density from points 
distance ′r  away at an earlier time t c′− −r r , since for a given element it 
is that effect which reaches x at time t. A similar interpretation applies to 
the computation of AA  from currents in Eq. (4.27). Because of this 
retardation effect, the potentials ( )tφ  and AA (t) are called the retarded 

potentials. [10] 

                                                 
9 The solutions to the inhomogeneous Maxwell equations using Green's functions is 

based on the existence of the Fourier transforms of the vector and scalar potential 
functions. These solutions do not in principal apply to monochromatic radiation sources. 
Using the Fourier transform, a monochromatic source (radiating at a single frequency) 
would radiate over an infinite time. This situation can be delete with if a limiting process is 
used starting with a finite duration time domain pulse. 

10 The physical content of equations Eq. (4.22) and Eq. (4.23) is not identical with that 
of Eq. (4.11) and Eq. (4.11) While in the differential form the sign of the time is in no way 
distinguished, i.e. the equations are not altered by an exchange of past with future, the 
integral forms make an essential distinction between past and future. Mathematically, 
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Maxwell's equations ( I ) – ( V ) provide several relations between the 
vector potential AA  and the scalar potential φ . By virtue of Maxwell's 
Equation ( I ), 

 0,∇ ⋅ =A  [11] (4.28) 

and, 

 2 .∇ φ = −ρ  [12] (4.29) 

As the electromagnetic wave propagates through sdpace, energy is 
transferred form the source (transmitter antenna) to the destination 
(receiving antenna). This energy is subject to the Laws of Conservation of 
Energy given by, 

 
V S

d
UdV S da

dt
= − ⋅∫ ∫  (4.30) 

The energy density U is given by the instantaneous value of the 
electric and magnetic fields, 

(VI) 2 31
joules m ,

2
U =E E  (4.31)

 

and, 

( VII ) 2 31
joules m .

2
U =B B  (4.32) 

                                                                                                                                          
Eq. (4.22) and Eq. (4.23) would also be possible in which values of jj  and ρ  at the source 
point are chosen for later time, t c+ rr , giving the advanced potentials. Such solutions 
would, however be contradictory to the concepts of causality, since charges and currents 
are considered to by the sources of potentials, since the electromagnetic field does not 
proceed the charges and currents which cause it [Pano66]. 

A theory of radiation involving the advanced potential was put forward by J. A. 
Wheeler (1911– ) and R. P. Feynman (1918–1988) [Whee45] in which a covariant action–
at–a–distance theory of electrodynamics can be formulated in terms of the symmetrical 
combination of the retarded and advanced potentials [Pano66]. 

11This is the result of the choice of the Lorentz Gauge. 

12This is Poisson's equation and it is the description of an irrotational vector field derived 
from its sources. The solution may be found using Green's theorem [Gree71] in which φ  is 
equal to the desired potential function and ψ  is set to 1 r  giving, 

( ) ( ) ( ){ } ( ) ( ){ }2 21 1 1 1r N r N ds r r dV∂φ ∂ − φ ∂ ∂ = ∇φ−φ∇∫ ∫Ñ . 
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where the total energy density is given by, 

 ( )2 21
2

U = +E B  (4.33) 

Eq. (4.31) and Eq. (4.32) represent the electrical and magnetic energy 
densities of the microscopic electromagnetic field. These energies reside in 
the field itself in a localized volume element.  

This volume element contains the total energy of, 

 ( )2 2 31
2 V

d x+∫ E B . (4.34) 

This result form the basis of the Poynting Theorem developed in §5.2 
and the Lagrangian and Hamiltonian approach to quantizing the 
electromagnetic field. 

Finally Maxwell's Equation ( III ) and ( I ) imply that charge is 
conserved through an equation of continuity, 

( VIII ) 0.
t

∂ρ
+ ∇ ⋅ =

∂
j  (4.35) 

§4.4. TRAVELING WAVES 

The four Maxwell equations, the continuity equation and the energy 
density equation, represent the sum of all knowledge regarding classical 
electrodynamics in the early twentieth century. From these equations all 
macro–world physics can be derived, since they describe the interaction of 
electromagnetism, including light, and matter in non–quantum 
mechanical and non–relativistic terms. 

Life is a wave, which in no two consecutive moments of its existence is 
composed of the same particles. 

 — John Tyndall 

The mathematical form of Maxwell's equations (( I ) – ( IV )) leads to the 
discovery of wave–like motion of the electric and magnetic fields. [13] The 
                                                 

13 Heinrich Rudolf Hertz (1857–94) devised an experimental test of Maxwell's traveling 
wave theory [Suss64], [D’ago75], [Hert95], [Long83], [Buch94]. He constructed a spark–gap 
generator which was used as a transmitter and a loop of wire as a receiver. The spark 
produced by the transmitter would produce a similar spark between a gap in the receiving 
loop. Using a zinc plate Hertz showed the standing waves were present. By moving the 
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equations also indicate that the speed of the waves should be a constant, 
related to the Permittivity and Permeability of free space. When Maxwell 
calculated the value of this constant, he found it ...  

… so nearly that of light, that it seems we have strong reason 
to conclude that light itself ... is an electromagnetic disturbance 
in the form of waves propagating through the electromagnetic 
field according to the electromagnetic laws [Zaja74].  

The existence of such waves was known theoretically prior to the 
engineering skills necessary to construct equipment capable utilizing 
them — a feat of theoretical physics not recently repeated. [14] 

To this point the equations describing the electric and magnetic fields 
have assumed that the waves are propagating in free space, free of any 
sources of the electromagnetic radiation, e.g. 0ρ = =j . The solutions to 
Maxwell's equations ((I) – (IV)) describe electromagnetic plane waves that 
are transverse to the direction of propagation, given by the vector k, such 
that the electric and magnetic field vectors are mutually orthogonal with 
k. [15] 

                                                                                                                                          
receiving antenna, the intensity of the received spark would vary. He confirmed these 
electric waves would pass through wooden doors, be reflected like light and were polarized. 
Faraday's lines of force as well as Maxwell's electric waves were confirmed leading to the 
electromagnetic devices of today. 

14 The electromagnetic waves described by Maxwell's equations are classified into 
several types, although they are all part of a continuous spectrum whose wave lengths 
range from 102m  for radio waves to 10 2− m  for microwaves, 10 10− m  for x–rays through 
10 15− m  for cosmic rays. Maxwell predicted the existence of electromagnetic waves on 
theoretical grounds when he derived the wave equation.  

The velocity of these waves depends n certain electrical constants — the permittivity 
and permeability of the propagating medium. The measurement of these constants along 
with Michael Faraday's experimental discovery that polarized light is rotated in the 
presence of a magnetic field led Maxwell to speculate that light was also an electromagnetic 
wave. Direct evidence of Maxwell's prediction came in 1888 in experiments performed by 
Heinrich Hertz (1857–1894) [Buch94]. 

15 The existence of transverse modes in the propagation of electromagnetic waves was 
first proposed by Augustin Jean Fresenel (1788–1827). In 1814 Fresenel wrote that he 
suspected light and heat were connected with the vibrations of a fluid. His concept that 
light was a form of motion of a medium was basic to his theory of optics. In 1821 he had 
reformulated his theory of optics in terms of waves propagating in a medium [Harm82]. 
Fresenel submitted a paper to the Paris Academy prize in 1819 which described the 
mathematical theory of the interference of light. His theory was confirmed by Thomas 
Young (1773–1829) through Young's double slit experiment. By 1821 Fresenel had 
formulated a theory of the polarization of light and realized that the vibrations of the 
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In order to develop the description of the refraction of electromagnetic 
waves in a later section, the influence of a material medium on the 
propagation of the electromagnetic waves must be addressed. Maxwell 
proposed that a dielectric constant ε  be added to the wave equations such 
that the propagation velocity is given by 1v = ε . This simple model can be 
used to describe wave propagation in an isotropic, non–absorbant 
dielectric, homogeneous medium. 

In modern notation, the Traveling Wave equation can be derived from 
Maxwell's equations. By noting that Maxwell's equations are functions of 
time, which implies the E  E  and BB  fields are not independent, all four of 
Maxwell's equations are needed for their solution. The two divergence 
equations (I) and (II) state that the flux of EE  and BB  outward through any 
volume in free space (in the absence of any charges) is zero. The two curl 
equations (III) and (IV) require that the EE  and BB  fields are coupled and 
imply if t∂ ∂B  is non zero, then so is ∇×E . The curl of the EE  field can only 
be non zero if EE  is a function of position. If BB  is a function of time ( t∂ ∂B ) 
then ∇×E  is also a function of time. Eq. (IV) now states that a BB  field 
which varies with time generates an EE  field which varies in both time and 
space. 

In a similar manner a non zero t∂ ∂E  generates a time and space 
varying BB  field. The coupling of these two fields forms the basis of 
electromagnetic wave propagation. 

The equation relating the spatial variations of the EE  field to the time 
variations of the BB  field can be obtained by eliminating BB  from the two 
curl equations (III) and (IV). This is done by taking the curl of Eq. (IV), 

( ) ( )t∇× ∇× = ∂ ∂ ∇×E B , using the vector identity 2( ) ( )∇× ∇× = ∇ ∇ ⋅ − ∇E E E  
and substituting into Eq. (3.30) to produce, 

  2 0.
t

∂
−∇ + ∇ × =

∂
BE  (4.36) 

In Eq. (4.36) the ∇  and the t∂ ∂  operations can be interchanged, so that 
using Eq. (3.24) results in the electric field wave equation, 

                                                                                                                                          
medium must be purely transverse. If this medium was composed of molecules bound by 
forces acting at a distance than transverse waves could not be propagated since the aether 
would have to be rigid. The problem of constructing a model of the aether that could 
propagate transverse rather than longitudinal waves became a major problem of nineteenth 
century optical physics [Harm82]. 
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2

2
2 0
t

∂
∇ − =

∂
EE . (4.37) 

Similarly, taking the curl of Eq. (3.24) and using Eq. (3.8) and Eq. (3.24) 
gives the magnetic field wave equation, 

 
2

2
2 0
t

∂
∇ − =

∂
BB . (4.38) 

Both vectors for EE  and BB  satisfy the same differential equation and 
describe coupled electric and magnetic fields propagating through space at 
the speed of light. [16]  

§4.4.1. Displacement Current in the Field Equations 

In §3.4 the displacement current term in Maxwell’s equation, 

 
t

∂
∇× = +

∂
EB j , (4.39) 

describes the displacement of the physical media carrying the 
electromagnetic force. In the theory of continuous media, such as a 
material –– either a conducting media or a dielectric. 

In free space, the measuring of the displacement current is less clear, 
since it involves the flow of a current which is caused by the flow of charge 
somehow connected by the displacement of the media. In Maxwell’s 
original formulation of the propagation of electromagnetic waves, a 
mechanical oscillation was visualized which carried the wave. The 
displacement of this media could account for the displacement current. 

                                                 
16A wave is described as plane homogeneous when it is possible to place a family of 

parallel planes so that along each one of these planes the magnetic field strength does not 
change. Since EE  and BB  are constant along wave planes, all partial derivatives with respect 
to z and y vanish. The x–component of the two curl equations and the two divergence 
equations read ∂ ∂ ∂ ∂EE BBx xt t= = 0  and ∂ ∂ ∂ ∂EE BBx xx x= = 0  while the remaining 
components of the curl equations read − = −∂ ∂ ∂ ∂BB EEz yx t , ∂ ∂ ∂ ∂BB EEy zx t= , 

∂ ∂ ∂ ∂EE BBy zt t= −  and − = −∂ ∂ ∂ ∂EE BBz yx t . These developments led Maxwell to conclude 

that the traveling waves of his electromagnetic theory behaved like the transverse waves of 
the previously observed light waves. 

This discovery was hailed as a dramatic confirmation of Maxwell’s theoretical 
description of electromagnetism. Within a decade Marconi and others were using Hertzian 
waves in practical applications. Unfortunately Hertz did not live to see these deices. He 
died of blood poisoning at age 36 in 1894 [Buch94]. 
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Once the aether was removed, the displacement current is no longer 
visible. By using the wave equations the displacement term of Eq. (4.39) 
can be eliminated. 

§4.5. CLASSICAL EXPLANATIONS FOR FORCE FROM FIELDS 

Now that the classical theory of fields has been developed and the 
resulting wave equation derived — what is force that is actually felt by the 
particle imbedded in the electromagnetic field at a distance from the 
accelerating charge? By what mechanism is this force carried to the 
charged particle? 

Using the Lorentz force function, 

 ( ) ,q v= + ×  F E B  (4.40) 

expressed in terms of the scalar potential φ  and the vector potential AA , the 
electric and magnetic field become, 

 ,
t

∂
=−∇φ−

∂
AE  (4.41) 

and, 

 .= ∇ ×B A  (4.42) 

Since these equations do not uniquely specify φ  and AA , Maxwell's 
equations take their simplest form when the scalar and vector potentials 
are related through the Lorentz condition,  

 0,
t

∂φ
∇ ⋅ + =

∂
A  (4.43) 

which gives the Lorentz force as, 

 ( ) .
dq v
dt

 = −∇ φ− ⋅ −  

AF A  (4.44) 

Maxwell's equations permit, in principle at least, the calculation of the 
fields EE  and BB  from arbitrary sources. Since these fields are important 
because of their actions on charges, the foundations of electromagnetic 
theory are completed by a description of the Lorentz Force density FF  as 
shown in Eq. (4.44). It should be remembered that Eq. (4.44) is a postulate, 
but it is illuminating to see its origin [Whit51]. The first terms in Eq. (4.44) 
extends the definition of EE , as the force exerted on a unit charge, to a force 
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exerted on a charge by a time varying field. The second term is the 
foundation of the postulate – it generalizes the magnetostatic results on 
the force between stationary currents circulating in loops of wire. Lorentz 
assumed that the current in a wire was due to the motion of individual, 
microscopic, charged particles. Formally this assumption is given by the 
current as I dq dt= , with the current in a loop of wire given as 
Idl dq dl dt= . Interpreting dl dt  as the velocity v of the charge dq , the 

force dF  on this charge dq  in motion is vd dq
c
×

=
BF , from the Biot–Savart 

law, which gives the origin of Eq. (4.44). Although the force density 
formula was inspired by the results of experiments on ensembles of 
charges that made up stationary currents, has been confirmed for general 
distributions of charges in arbitrary motion. 

§4.6. SUMMARY OF CLASSICAL FIELD THEORY 

This classical rationalization of force derived from potential fields 
provides the explanation for the observed effects of the electromagnetic 
force. The Lorentz force law describe in Eq. (4.44), plus measurements of 
the components of acceleration of the test particle, can be viewed as 
defining the components of the electric and magnetic field. Once the field 
components are known from the accelerations of a test particle, they can be 
used to predict the accelerations of other test particles. The Lorentz force 
law is both the definer of fields and a predictor of particle motions. 

Maxwell developed his ideas is a series of papers between 1861 and 
1868. Subsequent experimental and theoretical investigations 
demonstrated a remarkable range of applicability of the theory [Buch85]. 
Maxwell's equations encompass light waves and the phenomena of optics; 
they turn out to be consistent with Einstein's special relativity [17]  — in 
1927 they were put in quantum form by P. A. M. Dirac [Dira27]. 

                                                 
17 Although revisionist history has placed Albert Einstein's accomplishments in light of 

his failure to unify gravity and electromagnetism his work during the year of 1905 was 
breathtaking. During 1905 when Einstein was 26 he published his first great work — a 
paper describing the theory of the photoelectric effect. It was in this paper he formulated 
the concept that light consists of quanta or photons. In the same year he published the 
theory of Brownian (Robert Brown (1773–1858)) motion — the movement of fine particles in 
a liquid — which laid the groundwork for the field of statistical mechanics. A third paper 
on the special theory of relativity was followed by a fourth paper in which he derived the 
most popular expression in modern science E mc= 2 . 
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What remains — is the explanation for the cause of this force.  

The search for this explanation leads to the next level of physical 
theory, developed at the beginning of the twentieth century — Quantum 
Mechanics. Before developing the concepts of quantum mechanics a the 
effects electromagnetic force on a remote charged particle will be 
examined. This will require a description of the radiated field and antenna 
theory. This will be the subject of the next section. 

Before proceeding with the next section a short summary of the 
progress made so far is useful. Electrostatics and electromagnetic can be 
described using Maxwell's equations. From the original four equations 
electromagnetic waves were deduced which led to the engineering field of 
radio transmissions. 

In the next section, Maxwell's equations will be used to define: 

n The energy contained in the electromagnetic field. This field energy 
will be used to provide the force necessary to move the electrons in the 
remote antenna. 

n The vector and scalar potential fields will be defined. It will be through 
these new fields that the electromagnetic field will be quantized in later 
sections. 

n A simplistic description of an antenna and its radiation pattern will be 
developed. The electric and magnetic fields as a function of position and 
time will serve as the final description of classical electromagnetic — as 
it applies to the problem of this monograph. 

 

The God said Let there be Light, and there was Light. The Light was made 
before ether sunne or moone was created therefore we must not attribute that 
to ye creatures that are Gods instruments. 

 — The Geneva Bible, 1560 

                                                                                                                                          
During this year Einstein also held a full–time position at the Bern patent office, 

attended to his wife and small child and performed his physics research in his spare time. 
Since he was unable to obtain an academic position Einstein was isolated from the 
mainstream of the physics community — which may have attributed to his early 
successes. This position of isolation was repeated in his later life when he objected strongly 
to the underlying theories of quantum mechanics [Pais79], [Pais82], [Born71]. The 
argument with Neils Bohr was based on Einstein's contention that quantum mechanics as 
formulated at the time was not consistent with his principles of objectivity and causality 
that he found necessary for a sensical explanation of nature [Bohr49]. This argument has 
been popularized through Einstein's quote that God does not play dice with the Universe. 


